Power Domains and Iterated Function Systems
نویسنده
چکیده
We introduce the notion of weakly hyperbolic iterated function system (IFS) on a compact metric space, which generalises that of hyperbolic IFS. Based on a domain-theoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniqueness of the attractor of a weakly hyperbolic IFS and the invariant measure of a weakly hyperbolic IFS with probabilities, extending the classic results of Hutchinson for hyperbolic IFSs in this more general setting. We also present finite algorithms to obtain discrete and digitised approximations to the attractor and the invariant measure, extending the corresponding algorithms for hyperbolic IFSs. We then prove the existence and uniqueness of the invariant distribution of a weakly hyperbolic recurrent IFS and obtain an algorithm to generate the invariant distribution on the digitised screen. The generalised Riemann integral is used to provide a formula for the expected value of almost everywhere continuous functions with respect to this distribution. For hyperbolic recurrent IFSs and Lipschitz maps, one can estimate the integral up to any threshold of accuracy. ] 1996 Academic Press, Inc.
منابع مشابه
Rotation number and its properties for iterated function and non-autonomous systems
The main purpose of this paper is to introduce the rotation number for non-autonomous and iterated function systems. First, we define iterated function systems and the lift of these types of systems on the unit circle. In the following, we define the rotation number and investigate the conditions of existence and uniqueness of this number for our systems. Then, the notions rotational entropy an...
متن کاملDiscrete Iterated Function Systems
discrete iterated function systems discrete iterated function systems representation of discrete sequences with dimensional discrete iterated function systems discrete iterated function systems stochastic discrete scale invariance: renormalization representation of discrete sequences with high-dimensional power domains and iterated function systems fractal tilings from iterated function systems...
متن کاملDomain Theory in Stochastic Processes
We establish domain-theoretic models of nite-state discrete stochastic processes, Markov processes and vector recurrent iterated function systems. In each case, we show that the distribution of the stochastic process is canonically obtained as the least upper bound of an increasing chain of simple valuations in a prob-abilistic power domain associated to the process. This leads to various formu...
متن کاملA Probabilistic Power Domain Algorithm for Fractal Image Decoding
A new algorithm, called herein the random power domain algorithm, is discussed; it generates the image corresponding to an iterated function system with probabilities, a technique used in fractal image decoding. A simple complexity analysis for the algorithm is also derived.
متن کاملDynamical Systems, Measures and Fractals Via Domain Theory
We introduce domain theory in dynamical systems, iterated function systems (fractals) and measure theory. For a discrete dynamical system given by the action of a continuous map f : X ! X on a metric space X, we study the extended dynamical systems (V X; V f), (UX; Uf) and (LX;Lf) where V , U and L are respectively the Vietoris hyperspace, the upper hyperspace and the lower hyperspace functors....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Comput.
دوره 124 شماره
صفحات -
تاریخ انتشار 1996